Estimation of Hazard Function for Right Truncated Data
نویسندگان
چکیده
This thesis centers on nonparametric inferences of the cumulative hazard function of a right truncated variable. We present three variance estimators for the Nelson-Aalen estimator of the cumulative hazard function and conduct a simulation study to investigate their performances. A close match between the sampling standard deviation and the estimated standard error is observed when an estimated survival probability is not close to 1. However, the problem of poor tail performance exists due to the limitation of the proposed variance estimators. We further analyze an AIDS blood transfusion sample for which the disease latent time is right truncated. We compute three variance estimators, yielding three sets of confidence intervals. This work provides insights of two-sample tests for right truncated data in the future research. INDEX WORDS: Right truncation, Kaplan-Meier method, Cumulative hazard, Two-sample test ESTIMATION OF HAZARD FUNCTION FOR RIGHT TRUNCATED DATA
منابع مشابه
Strong Convergence Rates of the Product-limit Estimator for Left Truncated and Right Censored Data under Association
Non-parametric estimation of a survival function from left truncated data subject to right censoring has been extensively studied in the literature. It is commonly assumed in such studies that the lifetime variables are a sample of independent and identically distributed random variables from the target population. This assumption is often prone to failure in practical studies. For instance, wh...
متن کاملNonparametric Inferences for the Hazard Function with Right Truncation
Incompleteness is a major feature of time-to-event data. As one type of incompleteness, truncation refers to the unobservability of the time-to-event variable because it is smaller (or greater) than the truncation variable. A truncated sample always involves left and right truncation. Left truncation has been studied extensively while right truncation has not received the same level of attentio...
متن کاملDensity Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملPHMPL: a computer program for hazard estimation using a penalized likelihood method with interval-censored and left-truncated data.
The Cox model is the model of choice when analyzing right-censored and possibly left-truncated survival data. The present paper proposes a program to estimate the hazard function in a proportional hazards model and also to treat more complex observation schemes involving general censored and left-truncated data. The hazard function estimator is defined non-parametrically as the function which m...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کامل